Modelling and forecasting unbiased extreme value volatility estimator: A study based on exchange rates with economic significance analysis
Main Article Content
Abstract
Article Details
References
Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range‐based estimation of stochastic volatility models. The Journal of Finance, 57(3), 1047-1091.
Andersen, T. G., & Bollerslev, T. (1997). Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns. The Journal of Finance, 52(3), 975-1005.
Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and Forecasting Realized Volatility. Econometrica, 71(2), 579-625.
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30.
Brandt, M. W., & Jones, C. S. (2006). Volatility Forecasting With Range-Based EGARCH Models. Journal of Business & Economic Statistics, 24(4), 470-486.
Chou, R. Y. (2005). Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money, Credit and Banking, 37(3), 561-582.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196.
Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of empirical finance, 1(1), 83-106.
Driesprong, G., Jacobsen, B., & Maat, B. (2008). Striking oil: Another puzzle? Journal of Financial Economics, 89(2), 307-327.
Engle, R. F., & Russell, J. R. (1998). Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica, 1127-1162.
Garman, M. B., & Klass, M. J. (1980). On the Estimation of Security Price Volatilities from Historical Data. The Journal of Business, 53(1), 67-78.
Hansen, P. R. (2005). A Test for Superior Predictive Ability. Journal of Business & Economic Statistics, 23(4), 365-380.
Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453-497.
Kumar, D., & Maheswaran, S. (2014a). Modeling and forecasting the additive bias corrected extreme value volatility estimator. International Review of Financial Analysis, 34, 166-176.
Kumar, D., & Maheswaran, S. (2014b). A reflection principle for a random walk with implications for volatility estimation using extreme values of asset prices. Economic Modelling, 38, 33-44.
Kumar, D., & Maheswaran, S. (2014). A reflection principle for a random walk with implications for volatility estimation using extreme values of asset prices. Economic Modelling, 38, 33 - 44.
Marquering, W., & Verbeek, M. (2004). The economic value of predicting stock index returns and volatility. Journal of Financial and Quantitative Analysis, 39(02), 407-429.
Narayan, P. K., & Sharma, S. S. (2014). Firm return volatility and economic gains: The role of oil prices. Economic Modelling, 38, 142-151.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 61-65.
Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303-1313.
Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics, 47(1), 67-84.
Rogers, L. C., & Satchell, S. E. (1991). Estimating Variance From High, Low and Closing Prices. The Annals of Applied Probability, 1(4), 504-512.
Rogers, L. C., & Zhou, F. (2008). Estimating correlation from high, low, opening and closing prices. The Annals of Applied Probability, 18(2), 813-823.
Shimotsu, K., & Phillips, P. C. (2005). Exact local Whittle estimation of fractional integration. The Annals of Statistics, 33(4), 1890-1933.
Yang, D., & Zhang, Q. (2000). Drift-independent volatility estimation based on high, low, open, and close prices. The Journal of Business, 73(3), 477-492.