Predictability of Indian Exchange Rates
Main Article Content
Abstract
Article Details
References
Abarbanel.H.D.I, “Analysis of Observed Chaotic Data”, Springer. Verlag, New York, 1996.
Abhyankar A,CopelandLS,Wong W. Nonlinear dynamics in real-time equity market indices: evidence from the United Kingdom. Econ J 1995;105:864–80.
A. Abhyankar, L. S. Copeland & W. Wong (2012) Uncovering Nonlinear Structure In Real-Time Stock-Market Indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100, Journal of Business & Economic Statistics, 15:1, 1-14, DOI: 10.1080/07350015.1997.10524681 .
Bajo-Rubio, O., Fernandez-Rodriguez, F., Sosvilla-Rivero, S., 1992. Chaotic behavior in exchange-rate series: first results for the Peseta–U.S. dollar case. Econ Let 39, 207–211.
Bask, M. A positive Lyapunov exponent in Swedish exchange rates? Chaos Solitons Fractals 14 (5) (2002) 1295–1304.
Bask, M. Dimensions, and Lyapunov exponents from exchange rate series, Chaos Solitons Fractals 7 (12) (1996) 2199–2214.
Brock WA. Distinguishing random and deterministic systems: abridged version. J Econ Theory 1986;40:168–95.
Brock WA,Sayers CL. Is the business cycle characterized by deterministic chaos? J Monetary Econ 1988;22:71–90.
Brzozowska-Rup, K., Orlowski, A., 2004. Application of bootstrap to detecting chaos in financial time series. Physica A: Statistical Mechanics and its Applications 344, 317–321.
Chen, S., 1999. Complex dynamics of the real exchange rate in an open macroeconomic model. J. of Macroecon 21, 493–508.
Chod, J, Rudi, N. Strategic Investments, Trading, and Pricing Under Forecast Updating, Management Science 52(12):1913-1929.
Das A. amd Das P., Does composite index of NYSE represents chaos in the long time scale? Appl. Math. Comput. 174 (2006) 483–489.
Das A. amd Das P, Chaotic analysis of the foreign exchange rates, Appl.Math. Comput. 185 (2007) 388–396
Datta, R.P and Bhattacharyya, R. (2018), “Has the efficiency of foreign exchange markets in India evolved over time?”,International Journal of Emerging Markets, Vol 13, Issue 3 (forthcoming).
Eckmann J-P,OliffsonKamphorst S, Ruelle D and Scheinkman JA. 1988. Lyapunov exponents for stock returns. In: The Economy as a evolving complex system by Anderson PW,Arrow K.J, and Pines D. eds. , Addison –Wesley.
Federici D, Gandolfo G The Euro/Dollar exchange rate: Chaotic or non-chaotic? A continuous time model with heterogeneous beliefs, J of Ecoc. Dynamics and Control, 36 (2017), 670-681.
Frank MZ,Genc_ayR,Stengos T. International chaos? Eur Econ Rev 1988;32:1569–84.
Frank MZ,Stengos T. Some evidence concerning macroeconomic chaos. J Monetary Econ 1988;22:423–38.
Frank MZ,Stengos T. The stability of Canadian macroeconomic data as measured by the largest Lyapunov exponent. Econ Lett 1988;27:11–4.
Fraser A. M. and Swinney H. L. (1986). Independent Coordinates for Strange Attractors from Mutual Information. Physical Review A, 33, 1134-1140.
Gneiting, T., Sevcikova, H. and Percival, D. B. (2012). Estimators of fractal dimension: Assessing the smoothness of time series and spatial data. Statistical Science, 27(2), 247-277. (Version as technical report available at http://www.stat.washington.edu/research/reports/2010/ tr577.pdf)
Habibnia, A. (2016) Essays in high-dimensional nonlinear time series analysis. PhD thesis, London School of Economics and Political Science (LSE).Hegger, R., Kantz, H., Schreiber, T., Practical implementation of nonlinear time series methods: The TISEAN package; CHAOS 9, 413-435 (1999)
JaditzT,Sayers CL. Is chaos generic in economic data? Int J Bifurcation Chaos 1993;3:745–55.
Kaplan, D. (1994), Exceptional Events as Evidence for Determinism, Physica D, 73, 38--48.
Kantz H., Schreiber T., 2004, Nonlinear time series analysis, 2nd ed. Cambridge University Press, Cambridge, UK.
Muller, U. K and Watson, R., Measuring Uncertainty about Long-Run Predictions. Review of Economic Studies 83 (2016), 1711 – 1740.
Provenzale A., Smith L. A., Vio R. and Murante G., Distiguishing between low-dimensional dynamics and randomness in measured time series. Physica D., volume 58, 31 (1992)
HuffakerRay, Marco Bittelli, and Rodolfo RosNonlinear Time Series Analysis with R, Oxford University Press 2017
Rosenstein MT, Collins JJ, De Luca CJ, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65, 117 (1993)
Robinson, P. M., 1995, Gaussian semiparametric estimation of long range dependence. Ann. Statist., 23, 1630-1661.
Robinson, P.M. (ed.), 2003, Time series with long memory, Oxford University Press, Oxford 2003
Scargle, D.S., An introduction to chaotic and random time series analysis, Int. J of Imaging Systems and Tech. September, 1989.
ScheinkmanJA,LeBaron B. Nonlinear dynamics and stock returns. J Business 1989;62:311–37.
Takens F. (1981) Springer Lecture Notes in Mathematics #898: 266-281.
Takens, F., 1980. Detecting strange attractors in turbulence. In: Rand,D. A., Young, L.-S. (Eds.), Dynamical Systems and Turbulence (Warwick1980). Vol. 898 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,pp. 366- 381.
Theiler, J., 1986. Spurious dimensions from correlation algorithms applied to limited time-series data. Phys. Rev. A 34, 2427{2432.