Prediction of Gold and Silver Prices in an Emerging Economy: Comparative Analysis of Linear, Nonlinear, Hybrid, and Ensemble Models
Main Article Content
Abstract
Article Details
References
Adhikari, R., and Agrawal, R. K. (2014), 'A combination of artificial neural network and random walk models for financial time series forecasting', Neural Computing and Applications, 24(6), 1441–1449. https://doi.org/10.1007/s00521-013-1386-y
Aye, G., Gupta, R., Hammoudeh, S., and Kim, W. J. (2015), 'Forecasting the price of gold using dynamic model averaging', International Review of Financial Analysis, 41, 257–266. https://doi.org/10.1016/j.irfa.2015.03.010
Balkin, S. D., and Ord, J. K. (2000), 'Automatic neural network modeling for univariate time series', International Journal of Forecasting, 16(4), 509–515. https://doi.org/10.1016/S0169-2070(00)00072-8
Bampinas, G., and Panagiotidis, T. (2015), 'Are gold and silver a hedge against inflation? A two century perspective', International Review of Financial Analysis, 41, 267–276. https://doi.org/10.1016/j.irfa.2015.02.007
Bauer, E., and Kohavi, R. (1999), 'An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants', Machine Learning, 36(1–2), 105–139. https://doi.org/10.1023/A:1007515423169
Baur, D. G., and Lucey, B. M. (2010), 'Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold', Financial Review, 45(2), 217–229. https://doi.org/10.1111/j.1540-6288.2010.00244.x
Baur, D. G., and McDermott, T. K. (2010), 'Is gold a safe haven? International evidence', Journal of Banking & Finance, 34(8), 1886–1898. https://doi.org/10.1016/j.jbankfin.2009.12.008
Box, G. E., and Jenkins, G. M. (1976), 'Time series analysis, control, and forecasting', in Holden-Day Inc., San Francisco, CA.
Chen, A.-S., and Leung, M. T. (2005), 'Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations', Journal of Forecasting, 24(6), 403–420. https://doi.org/10.1002/for.967
Chen, A.-S., Leung, M. T., and Daouk, H. (2003), 'Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index', Computers & Operations Research, 30(6), 901–923. https://doi.org/10.1016/S0305-0548(02)00037-0
Dunis, C. L., Laws, J., and Schilling, U. (2012), 'Currency trading in volatile markets: Did neural networks outperform for the EUR/USD during the financial crisis 2007–2009?', Journal of Derivatives & Hedge Funds, 18(1), 2–41. https://doi.org/10.1057/jdhf.2011.31
Dunis, C. L., and Nathani, A. (2007), 'Quantitative trading of gold and silver using nonlinear models', Neural Network World, 17(2), 93.
Ghazali, R., Jaafar Hussain, A., Mohd Nawi, N., and Mohamad, B. (2009), 'Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network', Neurocomputing, 72(10–12), 2359–2367. https://doi.org/10.1016/j.neucom.2008.12.005
Gupta, S., Kumar, S., and Kumar, P. (2016), 'EVALUATING THE PREDICTIVE POWER OF AN ENSEMBLE MODEL FOR ECONOMIC SUCCESS OF INDIAN MOVIES', The Journal of Prediction Markets, 10(1), 30–52. https://doi.org/10.5750/jpm.v10i1.1182
Hassani, H., Silva, E. S., Gupta, R., and Segnon, M. K. (2015), 'Forecasting the price of gold', Applied Economics, 47(39), 4141–4152. https://doi.org/10.1080/00036846.2015.1026580
Huang, W., Lai, K. K., Nakamori, Y., Wang, S., and Yu, L. (2007), 'Neural networks in finance and economics forecasting', International Journal of Information Technology & Decision Making, 6(1), 113–140. https://doi.org/10.1142/S021962200700237X
Karathanasopoulos, A. (2016), 'Modelling and trading the English stock market with novelty optimization techniques', Economics and Business Letters, 5(2), 50–57.
Khashei, M., and Bijari, M. (2010), 'An artificial neural network (p, d, q) model for timeseries forecasting', Expert Systems with Applications, 37(1), 479–489. https://doi.org/10.1016/j.eswa.2009.05.044
Khashei, M., and Bijari, M. (2011), 'A novel hybridization of artificial neural networks and ARIMA models for time series forecasting', Applied Soft Computing, 11(2), 2664–2675. https://doi.org/10.1016/j.asoc.2010.10.015
Majhi, R., Panda, G., and Sahoo, G. (2009), 'Efficient prediction of exchange rates with low complexity artificial neural network models', Expert Systems with Applications, 36(1), 181–189. https://doi.org/10.1016/j.eswa.2007.09.005
Makridou, G., Atsalakis, G. S., Zopounidis, C., and Andriosopoulos, K. (2013), 'Gold price forecasting with a neuro-fuzzy-based inference system', International Journal of Financial Engineering and Risk Management, 1(1), 35–54. https://doi.org/10.1504/IJFERM.2013.053707
Morales, L., and Andreosso-O’Callaghan, B. (2011), 'Comparative analysis on the effects of the Asian and global financial crises on precious metal markets', Research in International Business and Finance, 25(2), 203–227. https://doi.org/10.1016/j.ribaf.2011.01.004
Özkan, F. (2013), 'Comparing the forecasting performance of neural network and purchasing power parity: The case of Turkey', Economic Modelling, 31, 752–758. https://doi.org/10.1016/j.econmod.2013.01.010
Paliwal, M., and Kumar, U. A. (2009), 'Neural networks and statistical techniques: A review of applications', Expert Systems with Applications, 36(1), 2–17. https://doi.org/10.1016/j.eswa.2007.10.005
Parisi, A., Parisi, F., and Díaz, D. (2008), 'Forecasting gold price changes: Rolling and recursive neural network models', Journal of Multinational Financial Management, 18(5), 477–487. https://doi.org/10.1016/j.mulfin.2007.12.002
Pierdzioch, C., Risse, M., and Rohloff, S. (2014), 'On the efficiency of the gold market: Results of a real-time forecasting approach', International Review of Financial Analysis, 32, 95–108. https://doi.org/10.1016/j.irfa.2014.01.012
Pierdzioch, C., Risse, M., and Rohloff, S. (2016), 'A boosting approach to forecasting gold and silver returns: economic and statistical forecast evaluation', Applied Economics Letters, 23(5), 347–352. https://doi.org/10.1080/13504851.2015.1073835
Selvanathan, E. A. (1991), 'A Note on the Accuracy of Business Economists’ Gold Price Forecasts', Australian Journal of Management, 16(1), 91–94. https://doi.org/10.1177/031289629101600106
Sermpinis, G., Dunis, C., Laws, J., and Stasinakis, C. (2012), 'Forecasting and trading the EUR/USD exchange rate with stochastic Neural Network combination and time-varying leverage', Decision Support Systems, 54(1), 316–329. https://doi.org/10.1016/j.dss.2012.05.039
Sharma, S. S. (2016), 'Can consumer price index predict gold price returns?', Economic Modelling, 55, 269–278. https://doi.org/10.1016/j.econmod.2016.02.014
Stock, J. H., and Watson, M. W. (2003), 'Forecasting Output and Inflation: The Role of Asset Prices', Journal of Economic Literature, 41(3), 788–829. https://doi.org/10.1257/002205103322436197
Taskaya-Temizel, T., and Casey, M. C. (2005), 'A comparative study of autoregressive neural network hybrids', Neural Networks, 18(5–6), 781–789. https://doi.org/10.1016/j.neunet.2005.06.003
Tkáč, M., and Verner, R. (2016), 'Artificial neural networks in business: Two decades of research', Applied Soft Computing, 38, 788–804. https://doi.org/10.1016/j.asoc.2015.09.040
van Wezel, M., and Potharst, R. (2007), 'Improved customer choice predictions using ensemble methods', European Journal of Operational Research, 181(1), 436–452. https://doi.org/10.1016/j.ejor.2006.05.029
Zhang, G., Eddy Patuwo, B., and Y. Hu, M. (1998), 'Forecasting with artificial neural networks:: The state of the art', International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
Zhang, G. P. (2003), 'Time series forecasting using a hybrid ARIMA and neural network model', Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0
Zhang, G. P., and Qi, M. (2005), 'Neural network forecasting for seasonal and trend time series', European Journal of Operational Research, 160(2), 501–514. https://doi.org/10.1016/j.ejor.2003.08.037