Can Webometrics Predict the Academic Rankings of Institutes?
Main Article Content
Abstract
Article Details
References
Aguillo, I., Bar-Ilan, J., Levene, M., & Ortega, J. (2010). Comparing university rankings. Scientometrics, 85(1), pp. 243-256.
Almind, T. C., & Ingwersen, P. (1997). Informetric analyses on the world wide web: methodological approaches to ‘webometrics’. Journal of documentation, 53(4), pp. 404-426.
Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting.
Baker, S., & Fradkin, A. (2011). What drives job search? Evidence from Google search data. Discussion Papers, 10-020.
Bar-Ilan, J. (2007). Access to query logs-an academic researcher’s point of view. In Query Log Analysis: Social And Technological Challenges Workshop at WWW.
Barjak, F., & Thelwall, M. (2008). A statistical analysis of the web presences of European life sciences research teams. Journal of the American Society for Information Science and Technology, 59(4), pp. 628-643.
Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American society for information science and technology, 55(14), pp. 1216-1227.
Choi, H., & Varian, H. (2009). Predicting initial claims for unemployment benefits. Google Inc, pp. 1-5.
Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, pp. 2-9.
Della Penna, N., & Huang, H. (2010). Constructing consumer sentiment index for US using Google searches (No. 2009-26).
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012.
Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., & Watts, D. J. (2010). Predicting consumer behavior with Web search. Proceedings of the National academy of sciences, 107(41), pp. 17486-17490.
Guzman, G. (2011). Internet search behavior as an economic forecasting tool: The case of inflation expectations. Journal of economic and social measurement, 36(3), pp. 119-167.
Hayes, T., & McArdle, J. J. (2017). Should we impute or should we weight? Examining the perfor-mance of two CART-based techniques for addressing missing data in small sample research with nonnormal variables. Computational Statistics & Data Analysis, 115, 35-52.
Jun, S. P., Yeom, J., & Son, J. K. (2014). A study of the method using search traffic to analyze new technology adoption. Technological Forecasting and Social Change, 81, pp. 82-95.
Kannan, R., & Govindan, M. (2011). Hyperlink analysis of e-commerce websites for business intel-ligence: exploring websites of top retail companies of Asia Pacific and USA. Journal of theoret-ical and applied electronic commerce research, 6(3), pp. 97-108.
Kholodilin, K. A., Podstawski, M., & Siliverstovs, B. (2010). Do Google searches help in nowcasting private consumption? A real-time evidence for the US.
Lambert, F. P. (2008). Rewriting the rules of online networked community information services: A case study of the mycommunityinfo. ca Model. ProQuest.
McLaren, N., & Shanbhogue, R. (2011). Using internet search data as economic indicators. Bank of England Quarterly Bulletin, (2011), Q2.
Ortiz‐Cordova, A., & Jansen, B. J. (2012). Classifying web search queries to identify high revenue generating customers. Journal of the American Society for Information Science and Technology, 63(7), pp. 1426-1441.
Payne, N., & Thelwall, M. (2004). A statistical analysis of UK academic web links. Cybermetrics: International Journal of Scientometrics, Informetrics and Bibliometrics, (8), pp 2.
Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), pp. 5707-5719.
Radinsky, K., Davidovich, S., & Markovitch, S. (2008, December). Predicting the news of tomorrow using patterns in web search queries. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01 (pp. 363-367). IEEE Computer Society.
Ravid, G., Bar-Ilan, J., Baruchson-Arbib, S., & Rafaeli, S. (2007). Popularity and findability through log analysis of search terms and queries: the case of a multilingual public service website. Journal of Information Science, 33(5), pp. 567-583.
Rech, J. (2007). Discovering trends in software engineering with google trend. ACM SIGSOFT Software Engineering Notes, 32(2), pp. 1-2.
Reilly, S., Richey, S., & Taylor, J. B. (2012). Using Google search data for state politics research: an empirical validity test using roll-off data. State Politics & Policy Quarterly, 12(2), pp. 146-159.
Smith, A. G. (2002). Does metadata count? A Webometric investigation. In International Conference on Dublin Core and Metadata Applications (pp. 133-138).
Spink, A., Jansen, B. J., Wolfram, D., & Saracevic, T. (2002). From e-sex to e-commerce: Web search changes. Computer, 35(3), pp. 107-109.
Suhoy, T. (2009). Query indices and a 2008 downturn: Israeli data (No. 2009.06). Bank of Israel.
Vaughan, L., & Hysen, K. (2002). Relationship between links to journal Web sites and impact factors. In Aslib proceedings (Vol. 54, No. 6, pp. 356-361). MCB UP Ltd.
Vaughan, L., & Romero‐Frías, E. (2014). Web search volume as a predictor of academic fame: An exploration of Google trends. Journal of the Association for Information Science and Technology, 65(4), pp. 707-720.
Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey‐based indicators vs. Google trends. Journal of Forecasting, 30(6), pp. 565-578.
Wu, L., & Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales. In Economic analysis of the digital economy (pp. 89-118). University of Chicago Press.