INFLUENCES ON THE TRUST IN PREDICTION MARKETS

Main Article Content

Thomas Seemann
Albrecht Enders
Harald Hungenberg

Abstract

  Prediction markets are an innovative forecasting method that has proven high prediction accuracy in many areas. The method is, however, far from being established since many organizations are still reluctant to use the method. In particular the trust in the forecast results is a key challenge that negatively impacts the adoption of the method. To get a better understanding of what drives trust in prediction markets we analyzed the perceptions of prediction market users. We identify factors that influence the trust and quantified them in an empirical study. The study is based on user surveys in six experimental prediction markets. The influencing factors were evaluated using a structural equation model. The results demonstrate that participants who are highly engaged and perceive trading in prediction market as exciting and entertaining also put a higher trust in the market results.   

Article Details

Section
Articles

References

M Abramowicz ‘Predictive Decisionmaking.’ Virginia Law Review (2006) 92(1): 69-122.

J S Armstrong ‘Principles of Forecasting - A Handbook for Researchers and Practitioners.’ (Norwell, Kluwer Academic Publishers, 2001).

R P Bagozzi and C Fornell ‘Theoretical Concepts, Measurements, and Meaning.’ in C Fornell (Eds.) ‘A Second Generation of Multivariate Analysis.’ (New York, Praeger Publishers, 1982).

W O Bearden and R G Netemeyer ‘Handbook of marketing scales.’ (Thousand Oaks, CA, Sage Publications, 1993).

J Berg, R Forsythe, F Nelson, and T Rietz ‘Results from a Dozen Years of Election Futures Markets Research‘ in C R Plott and V L Smith (Eds.) ‘Handbook of Experimental Economic Results.’ (Amsterdam, Noth Holland, 2008), p 742-751.

J Berg,, F Nelson, and T Rietz ‘Prediction market accuracy in the long run.’ International Journal of Forecasting (2008) 24(2): 283-298.

M Berlemann and C Schmidt ‘Predictive Accuracy of Political Stock Markets.’ Dresden Discussion Papers in Economics, Dresden University of Technology, 2001.

B Byrne ‘Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming.’ (Mahwah, N.J, Lawrence Erlbaum Associates, 2001).

K Y Chen and C R Plott ‘Information Aggregation Mechanisms: concept, design and implementation for a sales forecasting problem.’ Social Science Working Paper No. 1131, Pasadena, California Institute of Technology, 2002.

K Y Chen, L R Fine, and B Huberman ‘Predicting the Future.’ Information Systems Frontiers (2003) 5(1): 47-61.

S Cherry ‘Bet On It.’ Spectrum IEEE (2007) 44(9): 48-53.

G A Churchill ‘A Paradigm for Developing Better Measures of Marketing Constructs.’ Journal of Marketing Research (1979) 16(1): 64-73.

H Dietl, M Rese, and A Krebs ‘Virtuelle Informationsbörsen zur Prognose und Investitionsabsicherung. Lohmar’ (Lohmar, Germany, Josef Eul Verlag, 2004).

E F Fama ‘Efficient Capital Markets: A Review of Theory and Empirical Work.’ The Journal of Finance (1970) 25(2): 383-417.

E F Fama ‘Efficient Capital Markets: II.’ The Journal of Finance (1991) 46(5): 1575-1617.

R Forsythe, M Frank, V Krishnamurthy and T W Ross ‘Using market prices to predict election results: the 1993 UBC election stock market’ Canadian Journal of Economics (1995) 28 770–794.

R Forsythe, F Nelson, and G Neumann ‘Anatomy of an Experimental Political Stock Market.’ The American Economic Review (1992) 82(5): 1142-1161.

L Glosten and P Milgrom ‘Bid, ask and transaction prices in a specialist market with heterogeneously informed traders.’ Journal of Financial Economics (1985) 14(1): 71-100.

K C Green, J S Armstrong, A Graefe ‘Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared.’ Foresight: The International Journal of Applied Forecasting (2007) Issue 10:17-20.

T S Gruca, J E Berg and M Cipriano ‘Consensus and differences of opinion in electronic prediction markets’ Electronic Markets (2005) 15 13–22.

J F Hair, R E Anderson, R L Tatham, and W C Black ‘Multivariate data analysis: with readings.’ (Upper Saddle River, NJ, Prentice-Hall Inc., 1995).

R Hanson, ‘Combinatorial Information Markets‘ Information Systems Frontiers (2003) Vol. 5-1: 107-119.

F Hayek ‘The use of knowledge in society’ American Economic Review (1945) 35 519–530.

C Homburg and H Baumgartner ‘Die Kausalanalyse als Instrument der Marketingforschung: Eine Bestandsaufnahme.’ Zeitschrift für Betriebswirtschaft (1995) 65(10): 1091-1108.

C Homburg and A Giering ‘Konzeptualisierung und Operationalisierung komplexer Konstrukte: Ein Leitfaden für die Marketingforschung.’Marketing ZFP (1996) 18(1): 5-24.

J Huber ‘Wahlbörsen: Preisbildung auf politischen Märkten zur Vorhersage von Wahlergebnissen.’ (Hamburg, Kovac, 2002).

B G Malkiel ’Reflections on the Efficient Market Hypothesis: 30 Years Later.’ The Financial Review (2005) 40(1): 1-9.

D C Miller and N J Salkind ’Handbook of Research Design and Social Measurement’ (Newbury Park, CA, Sage Publications Inc., 2002).

G Ortner ‘Forecasting Markets - An Industrial Application (Part 1)’ Vienna, TU Vienna, Department of Managerial Economics and Industrial Organization, 1997.

R Roberts ‘Podcast from EconTalk: Vernon Smith on Markets and Experimental Economics.’ http://www.econtalk.org/archives/2007/05/vernon_smith_on.html, The Library of Economics and Liberty, 2007.

E S Rosenbloom and W Notz ‘Statistical tests of real-money versus play-money prediction markets’ Electronic Markets (2006) 16 63–69.

J R Rossiter ‘The C-OAR-SE procedure for scale development in marketing.‘ International Journal of Research in Marketing (2002) 19(4): 305-335.

V L Smith ‘Papers in Experimental Economics.‘ (Cambridge University Press, 1991)

V L Smith ‘Bargaining and Market Behavior: Essays in Experimental Economics.‘ (Cambridge University Press, 2000)

M Spann ‘Virtuelle Börsen als Instrument zur Marktforschung’ (Wiesbaden, Deutscher Universitätsverlag, 2002).

P C Tetlock. ‘How Efficient Are Information Markets? Evidence from an Online Exchange.‘ Department of Economics, Harvard University, 2004.

J Wolfers and E Zitzewitz ‘Prediction markets’ Journal of Economic Perspectives (2004) 18 107–126.

P Zöfel ’Statistik verstehen: Ein Begleitbuch zur computergestützten Anwendung.’ (München, Pearson Education Deutschland, 2001