Multivariate Methods in Assessing the Accuracy of Prediction Markets Ex Ante based on ohe Highest-Price Criterion

Main Article Content

Hung-Wen Lin
Chen-yuan Tung
Jason Yeh

Abstract

This study successfully establishes the principal component analysis with discriminant analysis (PCA-DA) model to assess the accuracy of contracts in the prediction markets ex ante based on the highest-price criterion. Trained by the xFuture data (7,274 contracts of future events) from 2006-2011, the PCA-DA model shows learning effects and provides 97.72% confidence to predict the outcome of any contract discriminated to the correct prediction group in the Exchange of Future Events. However, we need to greatly improve the low confidence of 19.58% for the PCA-DA model to predict the result of any contract discriminated to the incorrect prediction group.

Article Details

Section
Articles
Author Biographies

Hung-Wen Lin, National Taiwan University

Ph.D. student, Department of International Business, National Taiwan University

Chen-yuan Tung, Graduate Institute of Development Studies, National Chengchi University

Chen-yuan Tung , Ph.D. Professor Graduate Institute of Development Studies National Chengchi University Add: 64, Zhi-Nan Road, Sec. 2, Wenshan, Taipei, 11605, TAIWAN (O)Tel: 886-2-2938-7286 Fax: 886-2-2234-0056 E-mail: ctung@nccu.edu.tw

Jason Yeh, The Chinese University of Hong Kong

Associate Professor, Department of Finance, The Chinese University of Hong Kong

References

K. J. Arrow, R. Forsythe,, M. Gorham, R. Hahn, R. Hanson, J. O. Ledyard, S. Levmore, R. Litan, P. Milgrom, F. D. Nelson, G. R. Neumann, M. Ottaviani, T. C. Schelling, R. J. Shiller, V. L. Smith, E. Snowberg, C. R. Sunstein, P. C. Tetlock, P. E. Tetlock, H. R. Varian, J. Wolfers and E. Zitzewitz ‘The promise of prediction markets’ (2008) 320 Science 877-878.

G. Ortner ‘Forecasting markets: an industrial application’ Mimeo (Technical University of Vienna, 1998)

D. M. Pennock, S. Lawrence, C. L. Giles and F. A. Nielsen ‘The real power of artificial markets’ (2001) 291 Science 987-988.

J. Wolfers, A. Leigh ‘Three tools for forecasting federal elections lessons from 2001’ (2002) 37 Australian Journal of Political Science 223-240.

G. Brüggelambert ‘Information and efficiency in political stock markets: using computerized markets to predict election results’ (2004) 36 Applied Economics 742-768.

E. Servan-Schreiber, J. Wolfers, D. Pennock and B. Galebach ‘Prediction markets: does money matter?’ (2004) 14 Electronic Markets 43-251.

J. Wolfers and E. Zitzewitz ‘Prediction markets’ (2004) 18 Journal of Economic Perspectives 107-126.

R. Gürkaynak and J. Wolfers, Macroeconomic derivatives: an initial analysis of market-based macro forecasts, uncertainty, and risk (Federal Reserve Bank of San Francisco, 2005) http://www.frbsf.org/publications/economics/papers/2005/wp0 526bk.pdf.

A. Leigh and J. Wolfers ‘Competing approaches to forecasting elections: economic models, opinion polling and prediction markets’ (2006) 82 Economic Record 325-340.

C. F. Manski ‘Interpreting the predictions of prediction markets’ (2006) 91 Economics Letters 425‐29.

J. E. Berg, F. D. Nelson and T. A. Rietz ‘Prediction market accuracy in the long run’ (2008) 24 International Journal of Forecasting 285–300.

J. E. Berg, R. Forsythe and T. A. Rietz, What makes markets predict well? evidence from the Iowa electronic markets, in: W. Albers, W. Güth, P. Hammerstein, B. Moldovanu and E. Damme (Eds), Understanding Strategic Interaction: Essays in Honor of Reinhard Selten, Springer, New York, 1997.

J. E. Berg, F .D. Nelson and T.A. Rietz Accuracy and forecast standard error of prediction markets (Henry B. Tippie College of Business Administration, University of Iowa, 2003) Available from: http://www.biz.uiowa.edu/iem/archive/forecating.pdf.

S. Agrawal, N. Megiddo and B. Armbruster ‘Equilibrium in prediction markets with buyers and sellers’ (2010) 109 Economics Letters 46-49.

L. T. Bei and T.C. Cheng ‘Brand power index – using principal component analysis’ (2013) 45 Applied Economics 2954-2960.

G. Bodo, G. D'alessio and L. F. Signorini ‘Patterns of change in Italian regional labour markets: a multistep principal components analysis’ (1993) 25 Applied Economics 305-313.

J. G. Nellis ‘A principal components analysis of international financial integration under fixed and floating exchange rate regimes’ (1982) 14 Applied Economics 339-354.

C. Perignon, D. R. Smith and C. Villa ‘Why common factors in international bond returns are not so common’ (2007) 26 Journal International Money and Finance 284-304.

T. Chantziara and G. Skiadopoulos ‘Can the dynamics of term structure of petroleum futures be forecasted? Evidence from major markets’ (2008) 30 Energy Economics 962-985.

S. Kessler and B. Scherer ‘Hedge fund return sensitivity to global liquidity’ (2011) 14 Journal Financial Markets 301-322.

J. Y. Wang ‘Exploring potential R&D collaborators with complementary technologies: the case of biosensors’ (2012) 79 Technological Forecasting and Social Change 862-874.

O. Blaskowitz and H. Herwartz ‘On economic evaluation of directional forecasts’ (2011) 27 International Journal of Forecasting 1058-1065.

M. J. Anzanello and F. S. Fogliatto ‘Selecting the best clustering variables for grouping mass-customized products involving workers' learning’ (2011) 130 International Journal of Production Economics 268-276.

W. Y. Loh and N. Vanichsetakul ‘Tree-structured classification via generalized discriminant analysis’ (1988) 83 Journal American Statistical Association 715-725.

A. Charbaji, H. F. Ali and M. Mrrash ‘Predicting the government's decision to seek a rescheduling of external debt’ (1993) 25 Applied Economics 751-757.

R. Fuller and S. F. Seninger ‘A discriminant analysis of factors affecting the employment of urban youth’ (1984) 16 Applied Economics 757-762.

S. R. Thomas and N. K. James ‘Prediction of consumer innovator: application of multiple discriminant analysis’ (1968) 5 Journal Marketing Research 64-69.

M. R. Crask and W. D. Perreault ‘Validation of discriminant analysis in marketing research’ (1977) 14 Journal Marketing Research 60-68.

J. M. Blin and A. B. Whinston ‘Discriminant functions and majority voting’ (1975) 21 Management Science 557-566.

B. Mitchneck ‘An assessment of the growing local economic development function of local authorities in Russia’ (1995) 71 Economic Geography 150-170.

J. Kim ‘Economic development and its impact on occupational grouping structure in Korea 1971-1990’ (2001) 66 Technological Forecasting and Social Change 111-120.

J. Kim ‘Economic integration of major industrialized areas: an empirical tracking of the continued trend’ (2001) 67 Technological Forecasting and Social Change 187-202.

D. Mitra, D. D. Thomakos and M. A. Ulubasoglu ‘Protection for sale in a developing country: democracy versus dictatorship’ (2002) 84 Review of Economics and Statistics 497-508.

P. C. Wilton and E. A. Pessemier ‘Forecasting the ultimate acceptance of an innovation: the effects of information’ (1981) 8 Journal of Consumer Research 162-171.

D. L. Rosen and D. H. Granbois ‘Determinants of role structure in family financial management’ (1983) 10 Journal of Consumer Research 253-258.

B. I. Newman and J. N. Sheth ‘A model of primary voter behavior’ (1985) 12 Journal Consumer Research 178-187.

W. Zhao, R. Chellappa and A. Krishnaswamy ‘Discriminant analysis of principal components for face recognition’ Proceedings, International Conference on Automatic Face and Gesture Recognition, 1998, 336-341.

K. A. Do and K. Kirk ‘Discriminant analysis of event-related potential curves using smoothed principal components’ (1999) 55 Biometrics 174-181.

T. Jombart, S. Devillard and F. Balloux ‘Discriminant analysis of principal components: a new method for the analysis of genetically structured populations’ (2010) 11 BMC Genet 94.

S. Sharma Applied Multivariate Techniques (New York, John Wiley, 1996)

J. Stevens Applied Multivariate Statistics for the Social Sciences(NJ, Hillsdale, Lawrence Erlbaum, 2002)

R. B. Cattell ‘The scree test for the number of factors’ (1966) 1 Multivariate Behavioral Research 245-276.

J. F. Hair, R. E. Anderson, R. L. Tatham and W. C. Black Multivariate Data Analysis (NJ: Prentice-Hall, Upper Sadder River, 1998)

B. Everitt and G. Dunn Applied Multivariate Data Analysis (New York, 2nd edn, Oxford University Press, 2001)

R. Forsythe, F. Nelson, G. Neumann and J. Wright ‘Anatomy of an experimental political stock market’ (1992) 82 American Economic Review 1142–1161.

R. Forsythe, T. A. Rietz and T. W. Ross ‘Wishes, expectations and actions: a survey on price formation in election stock markets’ (1999) 39 Journal of Economic Behavior and Organization 83-110.

K. Oliven and T. A. Rietz ‘Suckers are born but markets are made: individual rationality, arbitrage, and market efficiency on an electronic futures market’ (2004) 50 Management Science 336-351.

S. Luckner, C. Weinhardt and R. Studer, Predictive power of markets: a comparison of two sports forecasting exchanges, in: Information Management and Market Engineering, T. Dreier, R.

Studer, C. Weinhardt (Eds), Karlsruhe University Press, Karlsruhe, 2006, p. 187-195.